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        Abstract: The single index model (SIM) is a useful regression 

tool used to alleviate the so-called curse of dimensionality. In this 

paper, we propose a variable selection technique for the SIM by 

combining the estimation method with the Elastic Net penalized 

method to get sparse estimation of the index parameters. 

Furthermore, we propose the support vector regression (SVR) to 

estimate the unknown nonparametric link function due to its ability to 

fit the non-linear relationships and the high dimensional problems. 

This make the proposed work is not only for estimating the 

parameters and the unknown link function of the single index model, 

but also for selecting the important variables 

simultaneously.Simulations of various single index models with 

nonlinear relationships among variables are conducted to 

demonstrate the effectiveness of the proposed semi-parametric 

estimation and the variable selectionversus the existing fully 

parametric SVR method. Moreover, the proposed method is illustrated 

by analyzing a real data set. A data analysis is given which highlights 

the utility of the suggested methodology. 

             Keywords:Elastic Net, Single-index model, High-dimensional ,Dimension    

         reduction, Variable selection, Support vector regression. 
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1..Introduction 

 

The linear regression model 𝐸(𝑦|𝑥) = 𝑥𝑇𝛽is one of the most popular 

techniques that uses to study the relationship among the dependent variable 

(output) and the vector of explanatory variables  (inputs). Unfortunately,the linear 

relationship between these variables is too limited which reduces the application of 

the linear regression model. So the use of linear regression model to describe the 

relationships in these cases is not appropriate choice. To enhance the elasticity of 

the model, a single index model  𝐸(𝑦|𝑥) = 𝐺(𝑥𝑇𝛽)was proposed with a smooth 

unknown link function 𝐺(. )(Ichimura, 1993). It is an extension of the linear 

regression model to deal with nonlinear relationships among variables. It is more 

flexible than the parametric models and at the same time keeps their good 

properties. The single index model is a semi parametric model and it consists of 

two parts,  parametric and nonparametric. The parametric part 𝛽 and the 

nonparametric part 𝐺(. )of the model need to be evaluated simultaneously.In order 

to build  the single index model, two steps should be implemented: First, is to 

estimate the parameters, and the other is to estimate the unknown link function. It 

is well known that  the convergence rate of the parametric estimator is much faster 

than the convergence rate of the nonparametric estimator (Peng & Huang, 2011). 

Hence, the estimation of the parameters accurately and efficiently  leads to get a 

good estimate for the link function of the single index model. However, if the set of 

explanatory variables contains some irrelevant variables (noise) or includes 

hundreds of variables, the precision of the estimation of parameters 𝛽 will 

deteriorate by the curse of high dimensionality. As a result, the selecting the most 

significant variables from a set of inputs is very important issue for the single index 

model.The other problem that affects the estimate of the parameters of the single 

index model in addition to the presence of noise variables is when the number of 

predictors p is greater than the sample size n (less than full rank ), but the number 

of significant  variables is typically less than n. The presence of this problem leads 

to the impossibility of estimating parameters without the process of selecting 

variables. 

 

Recently, the single index model which is developed by Ichimura 

(1993),has been widely studied by many researchers and it has gained much 

attention due to its excellent performance to deal with high dimensional problems 

in standard mean regression. The single-index model achieves dimension reduction 

efficiently and avoids the so-called the curse of high dimensionality because,  the 

index 𝑥𝑇𝛽 aggregates the dimension of covariates 𝑥. Hence, 𝐺(∙)in a single-index 

model can be estimated with the same convergence rate in probability that it would 

have if the one-dimensional quantity 𝑥𝑇𝛽 were observable (Horowitz, 2009). 

Furthermore, the parameters 𝛽 can be estimated withthe same convergence rate 

,1 √𝑛⁄ , that is achieved in a parametric linear model. Consequently, in terms of 

convergence rate  in probability, the single-index model is considered as accurate 
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as a parametric model to estimate 𝛽 and as precise as a one dimension 

nonparametric mean regression to estimate 𝐺. The ability of the single-index 

models for dimension reduction gives them a considerable feature over non 

parametric techniques in applications where 𝑥 is multi-dimensional and the 

structure of single-index is plausible. This advantage is come from the reality that 

the single index model is a semi-parametric model. It is well known that the 

parametric model has too hard assumptions and not easy to adapt with high 

dimensional. In contrast, the nonparametric model features flexible, but it suffers 

from decrease precision when increase the covariates ( Härdle et al. 2004). The 

combination between parametric and non parametric models is resulting in hybrid 

assumptions for the single-index models. These hybrid assumptions of the single-

index models are weaker than the assumptions of the parametric model and 

stronger than those of the fully nonparametric model. In other words, the single-

index models provide high accuracy and at the same time maintain flexibility of a 

nonparametric model (Horowitz, 2009). Therefore, the single index models 

minimize the risk of mis-specification relative to the parametric models and avoid 

some drawbacks of fully nonparametric models such as the difficulty of 

interpretation, and lack of capability of extrapolation. Generally, we can say, the 

single index models have the strengths of the parametric model with 

interpretability and the flexibility of the nonparametric model. 

 

Variable selection is very important tool in function approximation and it 

has become the focus of much research in fields of application for which data sets 

with  tens or hundreds or more of variables are available(Guyon, and Elisseeff, 

2003). In most applications, the generalization ability can be deteriorated if 

redundant predictors are included.Variable selection which solves the problem of 

deteriorating the generalization ability, directly reduces the number of original 

predictors by selecting their significant subset that still retains the generalization 

ability compared with that of the original inputs. Penalization techniques have been 

proposed as a promising techniques to improve the ordinary least squares method 

(OLS) since it in most applications does poorly in both prediction and 

interpretation.Tibshirani (1996) have proposed a new and promising method called 

the lasso.It is a penalized least squares technique imposing an 𝐿1-penalty on the 

coefficients of regression. Due to the nature of the 𝐿1-penalty, the lasso technique 

does both continuous shrinkage and variable selection simultaneously. Further, the 

lasso is appealing for many researchers owing to its ability to introduce sparse 

representation. However, the lasso technique has some drawbacks (Zou and Hastie, 

2005): First, in the case when p is larger than n, the lasso selects at most n 

predictors before it saturates, due to the nature of the convex optimization problem. 

This appears to be a limiting advantage for a variable selection method. Second,if 

there are very high pairwise correlations among a group of variables, the lasso 

tends to choose single variable from the group randomly without taking in 
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consideration the importance of variables. To overcome these problems, Zou and 

Hastie ( 2005) proposed the Elastic net method to improve the ability of lasso for 

variable selection when p is greater than n. 

 

The estimation of the nonparametric part of the single index model is 

important as the estimation of the parameters 𝛽of the fact that this part is 

complementary to the predictive model, so it should be estimated efficiently. In this 

paper, we use the support vector machine to evaluate the unknown link 

function  𝐺(∙). Support vector machine (SVM) is a set of supervised learning 

algorithms that can be applied to solve classification and regression problems 

(Vapnik 1995).It is fully nonparametric approach and considered as an important 

new methodology in the field of neural networks and non-linear modelling 

(Suykens et al. 2002).An  interesting feature of the SVM model is that one can 

obtain a sparse solution by the use of dual space , in the sense that some 

observations in the solution are equal to zero (Suykens et al. 2002). This advantage 

allows to the SVM model to alleviate the so-called the curse of high dimensionality 

including the problem when p is larger than n ,which is focused on it in our article. 

From here, the use of the SVM model to estimate the unknown link function 𝐺(∙), 

provides sufficient flexibility to solve the problem in primal space as well as dual 

space. 

 

In this paper, we suggest an extension of the SIM model of Ichimura et al. 

(1993) by considering the Elastic Net penalty method for estimation and variable 

selection. Further, the support vector regression tool has been proposed for 

estimating the unknown link function 𝐺(∙),while the non-linear least squares has 

been considered to estimate the vector of parameters 𝛽( Ichimura 1993). 

 

The rest of this article is organized as follows.Penalized SIMwith  Elastic 

Net is introduced in section 2. In section 3, the support vector regression is 

proposed to estimate the unknown nonparametric link function for the Elastic net 

single index model (ENSI).Numerical studies are conducted under various settings 

to evaluate the proposed method in section 4. In section 5, a real data analysis is 

reported to illustrate the proposed method. Finally, the conclusions are summarized 

in section 6.   

 

 

2..Elastic Net Single Index (ENSI) 

 

The Elastic net penalty is proposed by Zou and Hastie ( 2005) for simultaneous 

variable selection and parameter estimation.It is an adjusted regression model that 

combines between two techniques,  Lasso (𝐿1 norm) and Ridge regression (𝐿2 

norm). The penalty of Lasso tends to select individually correlated features and 

discards the others whereas Ridge penalty shrinks them towards each other. Mixing 



 
 
 
 
 
 
 
Elastic Net for Single Index Support Vector Regression Model 

__________________________________________________________________ 

199 

 

 

 
 

between these two methods provides the ability to overcome the limitation that 

faced by Lasso, namely its inability select more predictors than the exist 

observations in the dataset. Thereupon, the use of this technique helps to get rid of 

redundant variables. On the other hand it achieves non-zero determinant of the 

predictors matrix, which allows to apply the single index model. The proposed 

Elastic Net Single index here is for simultaneous achieving variable selection, 

parameter estimation and mean regression estimation.In order to illustrate the 

Elastic Net Single index methodology, we consider the next Single index model. 

 

𝑦 = 𝐺(𝑥𝑇𝛽𝐸𝑁𝑆𝐼) +  𝑟𝑖,               𝑖 = 1,2, … … … 𝑛                               (1) 
 

where𝑦 is the response variable and, 𝑥 is the p-dimensional vector of 

predictors,𝛽𝐸𝑁𝑆𝐼 is the vector of unknown coefficients, 𝑟𝑖 is the residual term, 𝐺(∙) 

is an arbitrary smoothnonparametric link function.This method aims to find a 

suitable estimator for the coefficients vector 𝛽 that minimizes the next objective 

function. 

  

arg min
𝛽𝐸𝑁𝑆𝐼

{‖𝑦 − 𝘨(𝑥𝑇𝛽𝐸𝑁𝑆𝐼)‖2 + 𝜆2‖𝛽𝐸𝑁𝑆𝐼‖2
2 + 𝜆1‖𝛽𝐸𝑁𝑆𝐼‖1}             (2) 

 

Thus, the estimates of the coefficients 𝛽𝐸𝑁𝑆𝐼 can be computed by using the 

following minimization problem: 

𝛽̂𝐸𝑁𝑆𝐼 =  arg min
𝛽𝐸𝑁𝑆𝐼

{‖𝑦 − 𝘨(𝑥𝑇𝛽𝐸𝑁𝑆𝐼)‖2 + 𝜆2‖𝛽𝐸𝑁𝑆𝐼‖2
2 + 𝜆1‖𝛽𝐸𝑁𝑆𝐼‖1}             (3) 

 

where𝘨(𝑥𝑇𝛽𝐸𝑁𝑆𝐼)is the unknown link function estimator of 𝐺(𝑥𝑇𝛽𝐸𝑁𝑆𝐼),𝜆1 and 

𝜆2correspond to the Lasso and Ridge regression penalties, respectivelywhich 

control the amount of regularization applied to the estimation. It should be noted 

that if 𝜆2 = 0, leads the Elastic-Net estimationback to the Lasso estimation, while 

if𝜆1 = 0, leads back to the Ridge estimation. 

 

The main goal is to find efficient estimators for the vector𝛽𝐸𝑁𝑆𝐼and the 

nonparametric link function 𝐺(∙). As 𝛽𝐸𝑁𝑆𝐼 is inside the link function, the 

challenge is to find a convenient parametric estimator for 𝛽𝐸𝑁𝑆𝐼, provided that 

reach the 1/√𝑛 - consistency rate. When  the estimator of 𝛽𝐸𝑁𝑆𝐼  is found with 

1/√𝑛-convergence rate, then we estimate the unknown nonparametric link function 

𝐺(. ). To estimate the coefficients vector 𝛽𝐸𝑁𝑆𝐼, we can use the semi-parametric 

least squares (SLS) or its weighted version (WSLS) that introduced by Ichimura 

(1993). It is required to set ‖𝛽‖ = 1, and the first component is positive (𝛽1 > 0) 

to satisfy the identification of the single index model (Ichimura, 1993). 
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3..Estimation of the unknown link function 𝑮(∙) 

 

As already mentioned, the estimation of a single index model 𝐸(𝑦|𝑥) =

𝐺(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼)is carried out in two steps. First, estimating the vector of coefficients 

𝛽𝐸𝑁𝑆𝐼, then using the resulting index values to estimate the unknown link function 

𝐺(∙) by  univariate nonparametric kernel regression technique of 𝑦 on 𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼.It 

should be taken into account when estimating a single index model that the 

functional shape of the link function 𝐺(∙)is unknown. Further, since the form of 𝐺(∙

)will determine the value of conditional expectation𝐸(𝑦|𝑥) = 𝐺(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼) for a 

given index 𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼, estimation of the index coefficients𝛽𝐸𝑁𝑆𝐼 will have to adjust 

to a specific estimating of the link function in order to yield a correct regression 

value (Härdle et al. 2004).Thus, in single index model both the index and the link 

function have to be estimatedalthough only the link function has nonparametric 

feature. 

 

In this part, we suggest to use the support vector regression model to estimate the 

link function 𝐺(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼)since it considered one of the most popular kernel 

regression methods in the machine learning community that used to solve the 

problems of non-linearity and the curse of dimensionality. For this purpose we can 

consider the next support vector regression model with the single index (𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼). 

𝘨(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼) = 𝑤, Φ(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼) + 𝑏                                                             (4) 

 

where𝑤is the weight vector, Φ is a nonlinear function and 𝑏 is the bias term. 

According to Vapnik (1995), the function 𝘨(. ) should be as flat as 

possible.Flatness of the function 𝘨(. ) can be achieved by minimizing the Euclidean 

norm ‖𝑤‖2. 

 

The coefficients 𝑤 and 𝑏 should be estimated by minimizing the next ε-tube loss 

function to optimize the generalization ability (predicted risk), (Andreou, 

Charalambous, & Martzoukos, 2009; Cristianini & Shawe-Taylor, 2000; Vapnik, 

1995): 

 

𝐿𝜀(𝑦𝑖) =  {
0                     if|𝑦𝑖 − 𝘨(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼)|≤ 𝜀 

|𝑦𝑖 − 𝘨(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼)|−𝜀        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                       (5) 

 

The problem (4) is equivalent the next convex optimization problem 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       
1

2
‖𝑤‖2 +  C ∑(𝜉𝑖

 + 𝜉𝑖
∗)

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       {

𝑦𝑖 − 𝘨(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼) − 𝑏 ≤  𝜀 + 𝜉𝑖
 

𝘨(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼) + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜉𝑖
∗

 
𝜉𝑖

 , 𝜉𝑖
∗  ≥ 0, 𝑖 = 1,2 … . , 𝑛

  

               (6) 

 

where the parameter C determines the trade-off  between the flatness and the 

number of deviations larger than ε-tube that are tolerated and 𝜉𝑖
 , 𝜉𝑖

∗ are positive 

slack variables used to measure deviations of the training vectors outside the ε-

tube. 

 

The dual formulation is used to solve the optimisation problem in (6). Some of of 

partial derivatives have been applied to get the final Elastic Net Single Index 

Support Vector Regression model (ENSI-SVR). 

𝘨(𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘((𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼)𝑖. (𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼))

𝑛

𝑖=1

+     𝑏 (8) 

 

where𝑘(. , . )is the kernel function thatused to transform the non-linear relationships 

in the input space to be in a linear form in the high dimensional feature space. 

 

The estimation procedure of the proposed method ENSI-SVR can be summarized 

by the next algorithm. 

 

Elastic Net Single Index Support Vector Regression Model 

 

 Estimate 𝛽𝐸𝑁𝑆𝐼 by 𝛽̂𝐸𝑁𝑆𝐼 

 Compute index values 𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼 

 Estimate the link function 𝐺(∙) by using nonparametricmethod 

(support vector regression  model) for the regression of 𝑦 on𝑥𝑇𝛽̂𝐸𝑁𝑆𝐼 
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4. Simulations examples 

 

In this section, three simulation examples are presented to compare the proposed 

method , the ENSI-SVR and the standard SVR in case of high-dimensional 

problem especially when p larger thann. The purpose of these simulations is to 

show the effectiveness of the proposed ENSI-SVR  method over the standard SVR 

technique in terms of dimension reduction and prediction accuracy. The first  

example combines  the non-linear and high-dimensionality problems (Hu et al. 

2013; Wu et al. 2010). The next two examples combine the same problems that 

mentioned in first example in addition to the problem when p larger than n (Peng 

and Huang, 2011).These methods are evaluated using the mean squared error for 

testing data (MSE). The prediction risk (MSE) is averaged over 100 replications of 

random data sets. These data sets have been divided into two groups, the 

percentage of the training samples, which used to build the model is 70%  and the 

percentage of the testing samples, which used to test the model is 30% . The kernel 

function that used to transform relationships among variables in this section is the 

radial basis function (RBF), and all calculations were implemented using R 

software. 

 

 

4.1 Simulation I 

 

In this example, we consider the  followingsingle-index model with 20 predictor 

variables: 

 

𝑦 = 𝘨(𝑥𝑇𝛽) +  𝑟𝑖,               𝘨(∙) = 5 cos(∙) + exp (− ∙2) 

 

where 𝛽 = 𝛽0/‖𝛽0‖ with 𝛽0 = (𝛽1, 𝛽2, … , 𝛽20)𝑇 = (1, 1, 1, 1, 1,0, … … 0), the set 

of predictors  𝑥 = (𝑥1, 𝑥2, … , 𝑥20 )𝑇are generated from uniform distribution with 

[0,1], while the additive error 𝑟𝑖 is distributed from the exponential distribution 

with parameter [1/2].The models are built using three different sample sizes,  

n= (50,100,200) with 100 replications. 

 

The results of implementation the SVR and ENSI-SVR are summarized in Table 1. 

It consists of the prediction risk (MSE) of these methods by using two different 

values of  the parameters  C, ε and h (small, and large).All results refer to the 

superiority of the proposed method over SVR method for different sample sizes 

and all combinations of the parameters.According to Figure 1, the proposed ENSI-

SVR is achieved the minimum values of the MSE compared to the SVR method for 

all values of samples and parameters. It is clear that the curve of the prediction risk 

tends to flatness for small sample size (n=50), but with increase of sample sizes we 

can note some ripples are appeared. On the other hand, there is convergence 

between the values of the MSE when a small value of the kernel parameter h , 
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while tends to expansion  in case of high  value of this parameter .However, these 

ripples and convergence do not affect overall advantage of the proposed method. 

 

Table 1: Results of applying SVR and ENSI-SVR methods for 20 predictors 

n Parameters 

SVR ENSI-SVR 

ɛ =0 ɛ =0.2 ɛ =0 ɛ =0.2 

C=1 C=100 C=1 C=100 C=1 C=100 C=1 C=100 

50 
h=1 5.6617 5.5174 5.6398 5.5191 4.0205 4.0144 4.0036 3.8498 

h=5 5.7493 5.5955 5.7259 5.5990 4.0349 4.1925 4.0275 3.8417 

100 
h=1 5.7606 5.2534 5.7718 5.2670 4.4500 4.7066 4.4362 4.5639 

h=5 6.3634 6.3064 6.3646 6.3106 4.4353 4.7992 4.4002 4.5484 

200 
h=1 5.2930 4.9759 5.2872 4.9668 4.6369 4.8669 4.6344 4.8026 

h=5 6.1728 6.0852 6.1648 6.0861 4.5953 4.8190 4.5716 4.7357 
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Figure 1: The mean square error of SVR and ENSI-SVR for for 20 predictors 

 

 

4.2 Simulation II 

 

In the nextexample , we simulated 100 data sets consisting of 40 predictors and two 

sample sizes (30, 100) based the next single index model. The first sample size is 

less than full rank since p larger than n. 

 

𝑦 = 𝘨(𝑥𝑇𝛽) +  0.1𝑟𝑖,               𝘨(∙) = sin (∙) 

 

where 𝛽 = 𝛽0/‖𝛽0‖ with 𝛽0 = (𝛽1, 𝛽2, … , 𝛽40)𝑇 = (3, 1.5, 0, 0, 2,0, … … 0), the set 

of predictors  𝑥 = (𝑥1, 𝑥2, … , 𝑥40 )𝑇and the additive error 𝑟𝑖are independent 

identically distributed N(0,1). 

 

The values of the prediction risk of the compared methods (SVR and ENSI-SVR) 

are presented in Table 2. Two different values of the parameters C, ε and h (small, 

and large) have been used to find of these values (MSE).Figure 2 illustrates these 

results graphically for two sample sizes.According to Table and Figure 2, the 

proposed method is succeeded to achieve values of the MSE lower than the SVR 

method for all values of parameters in case of full and less than full rank. Further, 

percentage of the MSE of the  SVR method to the proposed ENSI-SVR amounted 

to more than 10 times in most of cases . All this reflects the superiority of the 

proposed method over SVR method. 
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Table 2: Results of applying SVR and ENSI-SVR methods for 40 predictors 

n Parameters 

SVR ENSI-SVR 

ɛ =0 ɛ =0.2 ɛ =0 ɛ =0.2 

C=1 C=100 C=1 C=100 C=1 C=100 C=1 C=100 

30 
h=1 0.4295 0.4271 0.4239 0.4237 0.0273 0.0644 0.0391 0.0382 

h=5 0.4296 0.4272 0.4240 0.4237 0.0596 0.1225 0.0875 0.0874 

100 
h=1 0.3996 0.3986 0.3968 0.3967 0.0135 0.0191 0.0180 0.0179 

h=5 0.3996 0.3986 0.3968 0.3967 0.0206 0.0333 0.0298 0.0299 

 

 

 
 

Figure 2: The mean square error of SVR and ENSI-SVR for for 40 predictors 
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4.3 Simulation III 

 

This example is the same as previous example (Simulation II), except that the data 

sets consisting of 50 predictors and two sample sizes (40, 100).However, the 

number of predictors is still larger than the sample size for first data set.We let 

 𝛽 = 𝛽0/‖𝛽0‖with 𝛽0 = (𝛽1, 𝛽2, … , 𝛽50)𝑇 = (3, 1.5, 0, 0, 2,0, … … 0), the set of 

predictors  𝑥 = (𝑥1, 𝑥2, … , 𝑥50 )𝑇and the error term  𝑟𝑖are sampled from standard 

normal distribution. 

 

The comparison results of ENSI-SVR and SVR are displayed in the Table and 

Figure 3.The results of this example do not differ significantly from the results of 

the previous example with the exception of the number of the predictors is 50 

instead of 40 variable, which means of an increase in the number of noise variables 

by 10 variables.Despite the significant increase of the number of noise variables, 

but the  method of ENSI-SVR has maintained low levels of prediction error, which 

indicates the importance the tool of variable selection in the model.In general, the 

results point out to the importance of the proposed method especially in case when 

p larger than n. 

 

 

Table 3: Results of applying SVR and ENSI-SVR methods for 50 predictors 

n Parameters 

SVR ENSI-SVR 

ɛ =0 ɛ =0.2 ɛ =0 ɛ =0.2 

C=1 C=100 C=1 C=100 C=1 C=100 C=1 C=100 

40 
h=1 0.4907 0.4871 0.4837 0.4836 0.0182 0.0313 0.0314 0.0314 

h=5 0.4908 0.4871 0.4838 0.4837 0.0365 0.0528 0.0660 0.0659 

100 
h=1 0.3993 0.3984 0.3978 0.3977 0.0128 0.0177 0.01664 0.0172 

h=5 0.3992 0.3985 0.3978 0.3978 0.0176 0.0284 0.0269 0.0267 
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Figure 3: The mean square error of SVR and ENSI-SVR for for 50 predictors 

 

5. Real case study 

 

In this part, the comparison methods, ENSI-SVR and the SVR are illustrated 

through an analysis of the Body dimensions data (Heinz et al., 2003). The mean 

square error of the testing data (MSE) have been used to evaluate of these methods. 

The the radial basis function  (RBF)Kernel function is used to transform the inputs 

into high dimensional feature space and all computations were performed by the 

use of R software. 

 

5.1 Body dimensions data 

 

In this part, Body dimensions data have been utilized to evaluate the proposed 

method (SI-SVR) under condition of high-dimensionality. The measurements were 

initially taken by Heinz et al. (2003). This data set consists of 21 predictors in 

addition to four measurements as dependent variables, such as age, gender, height, 

and weight on 507 individuals. In this paper, we fit the weight with all 21 
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explanatory variables: biacromial diameter (BiacSk), biiliac diameter (BiilSk), 

bitrochanteric diameter (BitrSk), chest depth among spine and sternum at the level 

of nipple (CheDeSk),chest diameter at nipple level (CheDiSk), elbow diameter 

(ElbowSk), wrist diameter (WristSk), knee diameter (KneeSk), ankle diameter 

(AnkleSk), shoulder girth over deltoid muscles (ShoulGi), chest girth (ChestGi), 

waist girth (WaistGi), navel or abdominal girth (NavelGi), hip girth at level of 

bitrochanteric diameter (HipGi), thigh girth below gluteal fold (ThighGi), bicep 

girth (BicepGi), forearm girth (ForeaGi), knee girth over patella (KneeGi), calf 

maximum girth (CalfGi), ankle minimum girth (AnkleGi), and wrist minimum 

girth (WristGi). All of these variables (inputs in addition to output) are 

standardized to achieve‖𝛽‖ = 1. This data has been divided to 0.75 as training 

samples and 0.25 as testing samples.  

 

Tableand Figure 4, summarizes the results of applying SVR and ENSI-SVR with 

set of parameters  (C, ε and h) by three values for each parameter (small, moderate 

and large). According to Figure 4, there are some  of sharp leaps appear in the 

curve of MSE especially the SVR method for variousvalues of the parameters, 

whether small, moderate or large. While the MSE curve of the ENSI-SVR method 

suffers from leaps less. On the other hand, the proposed method achieved low 

levels of MSE are almost near zero for different values of the parameters,except 

when the kernel parameter is high (h=5), whereas the SVR method  achieved of 

high levels of MSE  for all of the parametersvalues which again reflects the 

superiority of the proposed ENSI-SVR method.  

Table 4: Results of applying SVR and SI-SVR methods for Body dimensions  

data  

Parameters 
SVR SI-SVR 

C=1 C=50 C=100 C=1 C=50 C=100 

h =0.5 

ɛ =0.0 0.5833 0.5581 0.5581 0.0870 0.0526 0.0552 

ɛ =0.1 0.6017 0.5816 0.5817 0.0854 0.0550 0.0521 

ɛ =0.2 0.6272 0.6108 0.6109 0.0923 0.0540 0.0525 

h =1 

ɛ =0.0 0.9913 0.9749 0.9750 0.1234 0.0598 0.0647 

ɛ =0.1 0.9970 0.9851 0.9851 0.1220 0.0757 0.0750 

ɛ =0.2 1.0042 0.9954 0.9955 0.1254 0.0824 0.0741 

h =5 

ɛ =0.0 1.0972 1.0946 1.0946 0.2288 0.2234 0.2770 

ɛ =0.1 1.0962 1.0946 1.0947 0.2321 0.2147 0.2486 

ɛ =0.2 1.0955 1.0947 1.0948 0.2360 0.1871 0.1927 
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Figure 5: The mean square error of SVR and ENSI-SVR for Body dimensions 

data 

 

6. Discussion and conclusion 

 

In this paper, we have proposed the variable selection for the single-index model 

(SIM) in order to achieve the dimensional reduction. The SIM consists of two 

parts, parametric and non-parametric, which make it combines the high accuracy 

and the flexibility. The key to the success of our proposed method is the use of the 

Elastic Net penalty in obtaining the significant parameters, which helps to get rid of 

noise variables. Further, without the use of this penalty technique, the SIM model 

can not be applied when the number of predictor variables p larger than sample size 

n. on the other hand, the unknown link function of the SIM is estimated using the 

support vector regression tool. The proposed method, ENSI-SVR is compared with 

fully parametric SVR method using three simulation examples and a real data set. 

Morever, same combination of free parameters and sample sizes have been used in 

order to  provide same conditions for comparison.Finally, the comparative results 

are yielded on the superiority of the proposed method, ENSI-SVR over existing 

SVR method to dispose of noise variables and reduce the curse of high 

dimensionality. 
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